
Performance Evaluation of Database Replication Systems

Rohit Dhamane Marta Patiño Martínez
Valerio Vianello Ricardo Jiménez Peris

Universidad Politécnica de Madrid
Madrid - Spain

{rdhamane, mpatino, vvianello, rjimenez}@fi.upm.es

ABSTRACT
One of the most demanding needs in cloud computing is
that of having scalable and highly available databases. One
of the ways to attend these needs is to leverage the scalable
replication techniques developed in the last decade. These
techniques allow increasing both the availability and scala-
bility of databases. Many replication protocols have been
proposed during the last decade. The main research chal-
lenge was how to scale under the eager replication model,
the one that provides consistency across replicas. In this
paper, we examine three eager database replication systems
available today: Middle-R, C-JDBC and MySQL Cluster
using TPC-W benchmark. We analyze their architecture,
replication protocols and compare the performance both in
the absence of failures and when there are failures.

1. INTRODUCTION
One of the most demanding needs in cloud computing is

that of having scalable and highly available databases. Cur-
rently, databases are scaled by means of sharding. Sharding
implies to split the database into fragments (shards). How-
ever, transactions are restricted to access a single fragment.
This means that the data coherence is lost across fragments.
An alternative would be to leverage the scalable database
replication techniques developed during the last decade that
were able to deliver both scalability and high availability of
databases. In this paper we evaluate some of the main scal-
able database replication solutions to determine to which
extent they can address the issue of scalability and availabil-
ity. Scalability might be achieved by using the aggregated
computer power of several computers. Failures of comput-
ers are masked by replicating the data in several computers.
Many protocols have been proposed in the literature target-
ing different consistency and scalability guarantees [19, 22,
26, 15, 4, 5, 14, 25, 12, 13, 24, 17, 21, 20, 7].
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Two dimensions are used to classify the protocols: when
replicas (copies of the data) are updated (eager or lazy repli-
cation) and which replicas can be updated (primary copy or
update everywhere) [16]. All replicas are updated as part of
the original transaction with eager replication, while with
lazy replication the replicas are updated after the trans-
action completes. Therefore, replicas are kept consistent
(with the same values) after any update transaction com-
pletes with eager replication. Update everywhere is a more
flexible model than primary copy, since an update transac-
tion can be executed at any replica. In [8] Cecchet et al.
present a state of the art analysis in the field of database
replication systems. The authors describe the generic ar-
chitectures for implementing database replication systems
and identify the practical challenges that must be solved to
close the gaps between academic prototypes and real sys-
tems. The paper does not evaluate any replicated database.
In this paper we follow a different approach. We have se-
lected three database replication systems, two academic and
a commercial one. We present a detailed description of their
architecture and then, we perform a performance evaluation
of these systems. Furthermore, many papers propose pro-
tocols and compare themselves with at most other protocol
using either one benchmark or an ad hoc benchmark. In this
paper we evaluate the performance of three systems with
TPC-W benchmark [2]. Moreover, the evaluation takes into
account failures. The rest of the paper is organized as fol-
lows: Section 2 describes the design of three database repli-
cation systems. Sections 3 and 4 report the experiments and
results under normal and fault injection conditions. Finally,
Section 5 concludes the paper.

2. SYSTEM DESIGN
In this section we examine the architecture, replication

protocol, fault-tolerance and load balancing features of Middle-
R [23], C-JDBC [9] and MySQL Cluster [1]. Both Middle-R
and C-JDBC are implemented as a middleware layer on top
of non-replicated databases, which store a full copy of the
database. On the other hand, MySQL Cluster uses a differ-
ent design: data is in-memory, partitioned (each node stores
a fraction of the database) and commits do not flush data
on disk.

2.1 Middle-R
Middle-R is a distributed middleware for database repli-

cation that runs on top of a non-replicated database [23].
Replication is transparent to clients which connect to the
middleware through a JDBC driver.



Figure 1: Middle-R Architecture

2.1.1 Architecture
An instance of Middle-R runs on top of a database in-

stance (currently, PostgreSQL), this pair is called a replica.
Figure 1 shows a replicated database with three replicas.
Since the replication middleware is distributed, it does not
become a single point of failure. Clients connect to the repli-
cated database using a JDBC driver, which is in charge of
replica discovery. The driver will broadcast a message for
discovering the replicas of Middle-R. The replicas will an-
swer to the JDBC driver, which will contact one of the
Middle-R replicas that replied to this message to submit
transactions. The replicas of Middle-R communicate among
them using group communication [11].

2.1.2 Replication
Each Middle-R replica submits transactions from connected

clients to the associated database. Read only transactions
are executed locally. As soon as a read only transaction fin-
ishes, the commit operation is sent to the database and the
result sent back to the client. Write transactions are also
executed at a single database (local replica) but, before the
commit operation is submitted to the database, the writeset
is obtained and multicast in total order to all the replicas
(remote replicas). The writeset of a transaction contains the
changes the transaction has executed. Total order guaran-
teed that writesets are delivered in the same order by all
replicas, including the sender one. This order is used to
commit transactions in the same order in all replicas and
therefore, keep all replicas consistent (exact replicas). Fig-
ure 2 shows the components of each replica. When the write-
set is delivered at a remote replica, conflicts are checked by
Middle-R and if the transaction does not conflict with any
other concurrent committed transaction, the writeset is ap-
plied and the commit is submitted at the local database.
If there is a conflict, the transaction is simply aborted at
the local and the rest of the replicas discard the associated
writeset.

2.1.3 Isolation Level
Middle-R implements both snapshot isolation and serial-

izability [6]. Depending on the isolation level provided by
the underlying database one of the two isolation levels can
be used. Since Middle-R runs on top of PostgreSQL and
PostgreSQL provides snapshot isolation as the highest iso-
lation level (called serializable), this is the isolation level we
will use in the evaluation.

2.1.4 Fault Tolerance
All the replicas with Middle-R work in decentralized man-

ner and hence failure at one replica does not affect others.
If a database fails the Middle-R instance associated with
that database detects the failure and switches off. Clients

Figure 2: Middle-R Components

connected to the failed replica detect this failure (broken
connection) and connects to another replica. The rest of
the replicas are notified about the failed replica using group
communication system. The view change messages are de-
livered for every failed as well as new instance of Middle-R
replica. The writesets are recorded in a log file which is used
to transfer missing changes to failed replicas when they are
available again or a new replica [18].

2.1.5 Load Balancing
Clients are not aware of replication when using Middle-

R. They use a JDBC driver to connect to Middle-R. The
driver internally broadcasts a multicast message to discover
Middle-R replicas. Each replica replies to this message and
includes information about its current load. The JDBC
driver at the client side decides which replica to connect to
based on this information. A simple algorithm is followed:
the probability to connect to some replica is inversely pro-
portional to its load.

2.2 C-JDBC
C-JDBC is also a middleware for data replication [10].

Database replication is achieved by a centralized replication
middleware that sits in between the client component of the
JDBC driver and the database drivers. As shown in Figure
3, the client application uses the JDBC driver to connect to
the C-JDBC server. C-JDBC is configured for each database
backend. It uses database specific driver to connect with the
database backend. If the three databases (DB1, DB2 and
DB3 in Figure 3) are different, the drivers will be different.

2.2.1 Architecture
Figure 4 shows the deployment of C-JDBC. C-JDBC ex-

Figure 3: C-JDBC Architecture



poses a single database view to the client called as “Vir-
tual Database“ [9] [10]. Each virtual database consists of an
Authentication Manager, Request Manager and Database
backend.

2.2.2 Replication
The components of C-JDBC are depicted in Figure 4 [9].

In C-JDBC the request manager handles the queries coming
from the clients. It consists of a scheduler, a load balancer
and two optional components, namely a recovery log and a
query result cache. Schedulers redirect queries to the right
database backend. The begin transaction, commit and abort
operations are sent to all the replicas, on the other hand
reads are sent to only single replica. Update operations are
multicast in total order to all the replicas. There are two
important differences with Middle-R: first, Middle-R is dis-
tributed, while C-JDBC is centralized. Second, Middle-R
only sends one message per write transaction, while C-JDBC
sends a total order multicast message per write operation.

2.2.3 Isolation Level
The scheduler can be configured for various types of schedul-

ing techniques. C-JDBC scheduler by default supports se-
rializable isolation and also defines its own isolation lev-
els (pass-through, optimisticTransaction, pessimisticTrans-
action).

2.2.4 Fault Tolerance
C-JDBC is a centralized middleware. The failure of the

request manager results in the system unavailability. The
recovery log is used to automatically re-integrate the failed
replicas into a virtual database. The recovery log records a
log entry for each begin, commit, abort and update state-
ment. The recovery procedure consists in replaying the up-
dates in the log.

2.2.5 Load Balancing
C-JDBC load balancing is limited to decide on which

replica a read operation is executed, since all write oper-
ations are executed at all replicas.

2.3 MySQL Cluster
MySQL Cluster is based on shared nothing architecture

to avoid a single point of failure. MySQL Cluster inte-
grates MySQL server with an in-memory storage engine

Figure 4: C-JDBC Components

Figure 5: MySQL Cluster.

called NDB (Network Database). MySQL Cluster is an in-
memory database. This makes this system different to the
previous ones, which are not in-memory databases.

2.3.1 Architecture
A MySQL Cluster consists of a set of nodes, each running

either MySQL servers (for access to NDB data), data nodes
(for storing the data), and one or more management servers
(Figure 5). NDB nodes store the complete set of data in-
memory. At least two NDB data nodes (NDBD) are required
to provide availability.

2.3.2 Replication
To provide full redundancy and fault tolerance MySQL

Cluster partitions and replicates data on data nodes. Each
data node is expected to be on a separate node. There are as
many data partitions as data nodes. Data nodes are grouped
in node groups depending on the number of replicas. The
number of node groups is calculated as the number of data
nodes divided by the number of replicas. If there are 4 data
nodes and two replicas, there will be 2 node groups (each
with 2 data nodes) and each one stores half of the data (Fig-
ure 6). At a given node group (Node group 0) one data node
(Node 1) is the primary replica for a data partition (Parti-
tion 0) and backup of another data partition (Partition 1).
The other node (Node 2) in the same node group is pri-
mary of Partition 1 and backup of Partition 0. Although,
there could be up to four replicas, MySQL cluster only sup-
ports two replicas. Tables are partitioned automatically by
MySQL Cluster by hashing on the primary key of the ta-
ble to be partitioned. Although, user-defined partitioning is
also possible in recent versions of MySQL Cluster (based on

Figure 6: MySQL Cluster Partitioning



the primary key).
All the transactions are first committed to the main memory
and then flushed to the disk after a global checkpoint (clus-
ter level) is issued. These two features differentiate MySQL
cluster from Middle-R and C-JDBC. Each replica in both
systems stores a full copy of the database (not a partition)
and when a transaction commits, data is flushed to disk.
There are not durable commits on disk with MySQL Cluster.
When a select query is executed on a SQL node, depending
on the table setup and the type of query, the SQL node
issues a primary key look up on all the data nodes of the
cluster concurrently. Each of the data nodes fetches the cor-
responding data and returns it back to the SQL node. SQL
Node then formats the returned data and sends it back to
the client application. When an update is executed, the SQL
node uses a round robin algorithm to select a data node to be
the transaction coordinator (TC). The TC runs a two-phase
commit protocol for update transactions. During the first
phase (prepare phase) the TC sends a message to the data
node that holds the primary copy of the data. This node
obtains locks and executes the transaction. That data node
contacts the backup replica before committing. The backup
executes the transaction in a similar fashion and informs
the TC that the transaction is ready to commit. Then, the
TC begins the second phase, the commit phase. TC sends
a message to commit the transaction on both nodes. The
TC waits for the response of the primary node, the backup
responds to the primary, which sends a message to the TC
to indicate that the data has been committed on both data
nodes.

2.3.3 Fault Tolerance
Since data partitions are replicated, the failure of a node

hosting a replica is tolerated. If a failure happens, running
transactions will be aborted and the other replica will take
over. A data partition is available as far as a node in a node
group is available. MySQL Cluster performs logging of all
the database operations to help itself recover from total sys-
tem failure. The log is stored on the file system. All the op-
erations are replayed to recover from the time of failure. In
case of, a single node failure the data node has to be brought
up on-line again and MySQL Cluster will be aware of the
new data node coming on-line again. The data node will
replicate/synchronize relevant data with other data node in
its node group and it will be ready again.

2.3.4 Isolation Level
MySQL Cluster only supports the read committed isola-

tion level. MySQL Cluster provides a more relaxed isolation
level than Middle-R and C-JDBC. and non repeatable reads
and phantoms are possible [6].

2.3.5 Load Balancing
For load balancing the queries over MySQL nodes and the

application clients various load balancing techniques such as
MySQL proxy [3] can be deployed.

3. TPC-W EVALUATION
TPC-W [2] benchmark exercises a transactional web sys-

tem (internet commerce application). It simulates the activ-
ities of web retail store (a bookstore). The TPC-W work-
load simulates various complex tasks such as multiple on-
line browsing sessions (e.g., looking for books), placing or-

Figure 7: TPC-W Workload

ders, checking the status of an order and administration of
the web retail store. The benchmark not only defines the
transactions but, also the web site. The number of clients
(emulated browsers) and the size of the bookstore inven-
tory (items) define the database size. The number of items
should be scaled from one thousand till ten million, increas-
ing ten times in each step. The performance metric reported
by TPC-W is the number of web interactions processed per
second (WIPS).

3.1 Experiment Setup
We ran experiments with two, four and up to six replicas.

All the machines used for the experiments are Dual Core
Intel(R) Pentium(R) D CPU 2.80GHz processors equipped
with 4GB of RAM, and 1Gbit Ethernet and a directly at-
tached 0.5TB hard disk. All the machines run Ubuntu 8.04
32xOS. The versions of the replication systems used in the
experiments are: MySQL Cluster version - mysql-cluster-gpl-
7.1.10-linux-i686-glibc23, and PostgreSQL-7.2 for Middle-R
and C-JDBC 2.0.2. The benchmark client was deployed on
one node and each replica of the replicated database runs
on a different node. Figure 8-(a) shows a Middle-R deploy-
ment with two replicas. On each node there is one replica: a
PostgreSQL database and an instance of Middle-R. Both C-
JDBC and MySQL Cluster use one more node than Middle-
R that acts as proxy/mediator for MySQL among the bench-
mark client and the middleware replicas or runs the C-JDBC
server (it is a centralized middleware). Each C-JDBC replica
runs an instance of PostgreSQL database (Figure 8-(b)). In
MySQL Cluster, each node runs both a MySQL server and
a data node (like in Middle-R) and there is also a front end
node (like in C-JDBC) that runs a management server (to
start/stop/monitor the cluster) and a proxy for load bal-
ancing (Figure 8-(c)). Since MySQL only supports up to

Figure 8: Two Replica Deployment. (a) Middle-R,
(b) C-JDBC, (c) MySQL Cluster



Figure 9: TPC-W: Throughput and Response Time

two replicas when there are more than two replica nodes,
each replica node does not store a full copy of the database.
The number of node groups is the number of data nodes
divided by the number of replicas. Therefore, there are 2
node groups and 4 partitions for the 4 replica setup and 3
node groups and 6 partitions for the 6 replica setup. Each
node group stores the primary of a partition and a backup of
another partition. The database size was 228.255MB before
any experiment. Each experiment was run for 12 minutes
(one minute each for warm-up and cold-down and ten min-
utes steady state).

3.2 Evaluation Results
Figure 9 shows the results for TPC-W experiments with

Middle-R, C-JDBC and MySQL Cluster. The throughput
increases linearly up to 450 clients for all configurations with
two replicas. This is due to the partitioning of the data.
The more data nodes, the more network overhead to pro-
cess a transaction (more data nodes need to be contacted to
execute a query). The opposite behavior is observed with
Middle-R and C-JDBC. The more replicas, the better scales
the system. This happens because the replicas store a full
replica of the database and therefore, they can be used to
run more queries in parallel. These results are confirmed in
the response time Figure 9. The response time for Middle-R
and C-JDBC is better than the one of MySQL Cluster with
two and six replicas (up to 75 ms lower). The response time
is similar for both systems till they saturate.

4. FAULT TOLERANCE EVALUATION
The goal of this set of experiments is to evaluate the per-

formance when there are failures in the systems studied in
this paper. More concretely, how long the system needs to
recover from a failure. For this, during the experiment we
inject the failure by shutting down one of the replicas and
show the evolution of the response time before and after
the failure. The replication systems were deployed with two
replicas as described in Figure 8. In this Section we repeat
the same experiment using the TPC-W benchmark. The
total time to run the experiment was 20 minutes, with one
of the replicas shutdown at 700 seconds mark. Warm up
and cold down periods were one minutes each like previous
experiment. The benchmark was configured with 300 clients
and two replicas. The initial size of the database was the

Figure 10: TPC-W Response Time

same one used for the evaluation without failures. Figure
10 shows the average response time of the three systems.
The yellow vertical line (i.e.700 seconds on x-axis) marks
the point where one replica is killed. The behavior of these
systems right after the fault occurs shows that for Middle-
R to recover from the node failure needs about 60 seconds
while in case of C-JDBC it takes about 180 seconds. The
response time for Middle-R and C-JDBC before fault and
after the recovery is about 30-35 milliseconds. That is, both
systems are able to stabilize after some time. The recov-
ery time for MySQL Cluster is lower, about 5-10 seconds.
MySQL Cluster with two replicas performance is not very
good when executing TPC-W. We can observe the increase
in response time until the fault occurs and after the recov-
ery, the response time is lower and stable in comparison to
the response time before the failure.

5. CONCLUSIONS
In this paper we have described the architecture and main

features of three replication systems: two academic proto-
types (Middle-R and C-JDBC) and a commercial one (MySQL
Cluster). We have also evaluated the performance of these
systems with TPC-W, with and without replica failures.
The performance evaluation shows a better behavior of the
commercial system when the database fits in memory in
terms of throughput when the database fits in memory. This
is an expected behavior for a number of reasons: commer-
cial version vs. academic prototypes, weaker consistency
(read committed vs. snapshot isolation/serializable) and in-
memory database store (periodic disk flush vs. disk flush
at commit time). The academic prototypes present a rea-
sonable behavior compared to MySQL Cluster taking into
account these differences.
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Preventive replication in a database cluster.
Distributed and Parallel Databases, pages 223–251,
2005.

[22] M. Patiño-Mart́ınez, R. Jiménez-Peris, B. Kemme,
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